Synthesis and stereochemistry of the epoxides of 2-arylmethylidene-1-tetralones

Waldemar Adam,^{*,*a*} Judit Halász,^{*b*} Zsigmond Jámbor,^{*c*} Albert Lévai,^{*,*c*} Csaba Nemes,^{*c*} Tamás Patonay^{*c*} and Gábor Tóth^{*,*b*}

^a Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

^b Technical Analytical Research Group of the Hungarian Academy of Sciences,

Institute for General and Analytical Chemistry of the Technical University, St. Gellért tér 4, H-1111 Budapest, Hungary

^c Department of Organic Chemistry, Lajos Kossuth University, Egyetem tér 1, H-4010 Debrecen, Hungary

Oxidation of both the E and Z isomers of the 2-arylmethylidene-1-tetralones 1 by alkaline hydrogen peroxide afforded the spiroepoxides *trans*-2a-g as sole products in high yields. In contrast, the dimethyldioxirane epoxidation of the E isomers 1a-g gave the corresponding *trans* spiroepoxides in good yields, while the Z isomers 1a,c,e yielded the respective *cis* spiroepoxides in moderate yields. Epoxidation of (Z)-1a,c,e by *m*-chloroperoxybenzoic acid yielded *ca*. 6:1 mixtures of *cis*-2a,c,e and *trans*-2a,c,e spiroepoxides. Separation of the isomeric epoxides was achieved by silica gel chromatography and their structures, relative configurations and stereochemistry were elucidated by NMR spectroscopy.

Although both (*E*)- and (*Z*)-2-arylmethylidene-1-tetralones[†] are well-known compounds,^{1–3} their epoxidation has hitherto received little attention. Of the various epoxidation procedures only the alkaline hydrogen peroxide oxidation was utilized in the case of selected 2-arylmethylidene-1-tetralones and 2arylmethylidene-4,4-dimethyl-1-tetralones to obtain the respective epoxides.^{4–6} As an extension of our investigations on the epoxidation of exocyclic α,β -unsaturated ketones,^{7–11} we have herein undertaken a comparative study of both (*E*) and (*Z*) isomers of 2-arylmethylidene-1-tetralones 1, by employing alkaline hydrogen peroxide, dimethyldioxirane and *m*-chloroperoxybenzoic acid as oxygen transfer agents. The specific aim was to investigate the influence of the electronic character and the stereochemistry of the α,β -enones 1, for which nucleophilic and electrophilic oxidants have been compared.

Results and discussion

Epoxidation of α , β -unsaturated ketones by alkaline hydrogen peroxide (Weitz–Scheffer reaction ¹²) is frequently used for the preparation of the epoxides derived from electron-deficient olefins. As mentioned above, this is the only procedure used so far for the epoxidation of 2-arylmethylidene-1-tetralones. To check the utility of this method, both *E* and *Z* isomers of 2arylmethylidene-1-tetralones (*E*)-**1a**–**g** and (*Z*)-**1a**,**c**,**e** (Scheme 1) have been subjected to alkaline hydrogen peroxide oxidation [method (*i*)].

NMR spectroscopic measurements (vide infra) revealed that trans spiroepoxides 2a-g, in which the carbonyl and the aryl groups are located on the opposite sides of the epoxide ring, were obtained as sole products from both E and Z isomers in good yields (see Table 1). Thus, the simple and convenient alkaline hydrogen peroxide procedure can only be used for the preparation of trans epoxides of 2-arylmethylidene-1-tetral-ones.

Dimethyldioxirane or DMD¹³ (in acetone)¹⁴ is a powerful and convenient oxidant for the epoxidation of various electron-

Scheme 1 Reagents: i, H₂O₂, NaOH; ii, DMD; iii, m-CPBA

deficient functionalized olefins. Recently we have found that (E)-3-arylmethylidenechromanones gave trans spiroepoxides and their Z isomers yielded cis spiroepoxides together with 3aroylchromones on dimethyldioxirane oxidation,⁸ while (E)-3arylmethylideneflavanones afforded trans, trans spiroepoxides in high yields and complete diastereoselectivity.⁹ Dimethyldioxirane epoxidation [method (ii)] of both (E)- and (Z)-2arylmethylidene-1-tetralones 1 followed the procedure employed on the related exocyclic α , β -unsaturated ketones, ⁷⁻¹¹ for which isolated dimethyldioxirane (*ca.* 0.1 mol dm^{-3} in acetone) in anhydrous CH₂Cl₂ at room temperature was used. The progress of the oxidation was monitored by thin-layer chromatography (TLC) and fresh batches of dimethyldioxirane solution were added at 24 h intervals until complete consumption of the starting 2-arylmethylidene-1-tetralones 1 was achieved (Scheme 1). According to the NMR spectroscopic investigations (vide infra) the 2-arylmethylidene-1-tetralones (E)-1a-g gave the spiroepoxides trans-2a-g in high yields (80-

 $[\]dagger$ Tetralone is an abbreviated name for 3,4-dihydronaphthalen-1(2*H*)-one.

90%) and completely stereoselectively with DMD (1.5–2 equiv., 48–72 h; see Table 1), whereas the (Z)-**1a,c,e** isomers afforded the *cis*-**2a,c,e** spiroepoxides with complete stereoselectivity as well, but only in moderate yields (20–30%), and longer reaction times (120–240 h) and 3–5 equiv. of dimethyldioxirane were necessary. Longer reaction times were required as the electronacceptor character of the R substituent increased, which would be expected of an electrophilic oxidant such as DMD.^{8,9}

Since the dimethyldioxirane epoxidation of the (Z)-2-

Table 1Preparation of spiroepoxides 2

Method	Starting material	Product	Ratio DMD:1	Reaction time (h)	Yield (%)
i	(E)-1a	trans-2a		8	81
i	(Z)-1a	trans- 2a		8	78
ii	(E)-1a	trans-2a	1.5	48	79
ii	(Z)-1a	cis-2a	3.0	144	28
i	(<i>E</i>)-1b	trans-2b		8	94
ii	(<i>E</i>)-1b	trans-2b	1.5	48	85
i	(<i>E</i>)-1c	trans-2c		8	96
i	(Z)-1c	trans-2c		8	83
ii	(<i>E</i>)-1c	trans-2c	1.5	48	85
ii	(Z)-1c	cis -2c	3.0	120	23
i	(<i>E</i>)-1d	trans-2d		8	94
ii	(<i>E</i>)-1d	trans-2d	1.5	48	79
i	(<i>E</i>)-1e	trans-2e		8	90
i	(Z)-1e	trans-2e		8	91
ii	(<i>E</i>)-1e	trans-2e	2.0	72	81
ii	(Z)-1e	cis- 2e	5.0	20	30
i	(E)- 1f	trans-2f		8	93
ii	(<i>E</i>)-1f	trans-2f	2.0	72	89
ii	(E)-1g	trans-2g	2.0	72	83

arylmethylidene-1-tetralones gave the *cis* spiroepoxides only in moderate yields, compounds (Z)-1a,c,e were oxidized by *m*-chloroperoxybenzoic acid [MCPBA, method (*iii*)] by way of comparison. This electrophilic oxidant provided a *ca*. 6:1 mixture of the *cis*-2a,c,e and *trans*-2a,c,e spiroepoxides (Scheme 1). Clearly, dimethyldioxirane is a more convenient oxidant for the stereoselective epoxidation of the (Z)-2-arylmethylidene-1tetralones than *m*-chloroperoxybenzoic acid.

Characteristic ¹H and ¹³C NMR chemical shift data of the *trans*-2 and *cis*-2 spiroepoxides are summarized in Tables 2 and 3. In CDCl₃ the 3-H₂ and 4-H₂ protons gave a strongly coupled, overlapping spectrum, while in C₆D₆ the signals of these four protons are capable of first-order analysis; for this reason we used C₆D₆ as solvent in all NMR measurements. A common characteristic of the proton spectra is the extremely high chemical shifts of the 8-H signals as a consequence of the anisotropic effect of the *peri*-positioned C(1)=O carbonyl group.¹⁵ Characteristic differences of the 3'-H and 2",6"-H signals of the *trans* and *cis* isomers [$\delta_{trans}(3'-H) > \delta_{cis}(3'-H)$ and $\delta_{trans}(2",6"-H) < \delta_{cis}(2",6"-H)$] also originate from the deshield-ing effect of the carbonyl group.¹⁵

The differentiation of the *trans* and *cis* isomers requires a detailed investigation of the conformational behaviour due to the flexibility of the annexed six-membered ring. Thus, in solution the conformational equilibrium among the halfchair **A**, envelope **A**, envelope **B** and halfchair **B** must be considered (Scheme 2), as in the case of the related spiroepoxides of the 3-arylmethylidenechromanones.⁸

In the halfchair conformers C-2 and C-3 and in the envelope ones C-3 are located out of the plane constituted by the other atoms of the ring. The orientation of the spiroepoxy oxygen atom is quasi-equatorial in the halfchair and envelope A

 Table 2
 ¹H NMR chemical shifts of spiroepoxides trans- and cis-2 (400 MHz)

Proton	trans-2a	trans-2b	trans-2c	trans-2d	trans-2e	trans-2f	trans-2g	cis-2a ^a	cis -2c ^a	cis- 2e ^a
3-H.,	2.10	2.18	2.15	2.10	2.03	2.03	1.96	2.39	2.41	2.37
3-H.	1.69	1.78	1.77	1.60	1.54	1.53	1.39	1.58	1.62	1.56
4-H.,	2.46	2.56	2.52	2.49	2.42	2.41	2.34	2.99	3.04	2.97
4-H.	2.28	2.38	2.33	2.39	2.32	2.32	2.34	2.59	2.64	2.61
5-H ั	6.75	6.86	6.82	6.88	6.84	6.83	6.83	6.89	6.91	6.91
6-H	7.18	7.22	7.19	7.22	7.20	7.18	7.19	7.07	7.10	7.10
7-H	7.08	7.11	7.10	7.11	7.10	7.09	7.09	6.84	6.86	6.88
8-H	8.36	8.33	8.35	8.30	8.32	8.33	8.33	8.00	8.02	8.00
3'-H	4.52	4.50	4.53	4.41	4.38	4.35	4.32	4.02	4.07	3.88
2″.6″-H		7.18	7.16	7.03	6.93	6.83	6.83	7.64	7.52	7.37
3″,5″-H	7.11-7.26	6.84	7.03	6.86	7.15	7.29	7.07	7.16	6.96	7.09
4″-H								7.06		
Others		OMe	Me						Me	
		3.44	2.17						2.06	

^a Measured at 250 MHz.

 Table 3
 ¹³C NMR chemical shifts of spiroepoxides trans- and cis-2 (62.5 MHz)

Carbon	trans-2a	trans-2b	trans-2c	trans-2d	trans-2e	trans-2f	trans-2g	cis-2a	cis- 2c	cis-2e
 C-1	192.7	192.9	192.8	192.5	192.4	192.3	191.8	190.0	190.1	189.9
C-2	64.2	64.4	64.3	64.2	64.1	64.1	64.2	67.7	67.8	67.7
C-3	25.5	25.6	25.6	25.4	25.4	25.4	25.3	32.6	32.6	32.4
C-4	27.2	27.4	27.3	27.2	27.2	27.2	27.0	29.1	29.2	29.0
C-4a	143.4	143.4	143.4	143.3	143.3	143.3	143.2	142.9	142.9	142.9
C-5	128.8	128.9	128.8	128.6	128.8	128.8	128.8	128.7	128.8	128.7
C-6	133.7	133.8	133.7	133.9	133.9	133.9	134.1	133.4	133.4	133.7
C-7	127.1	127.0	127.0	127.1	127.1	127.2	127.3	126.8	126.7	126.9
C-8	127.7	127.6	127.7	127.7	127.7	127.7	127.8	127.5	127.4	127.5
C-8a	133.4	133.5	133.5	133.3	133.3	133.3	133.2	133.8	133.9	133.7
C-3′	63.9	63.9	64.0	63.2	63.1	63.1	62.8	65.3	65.4	64.6
C-1″	135.0	126.8	132.1	130.7	133.5	134.0	139.6	133.9	131.0	132.3
C-2″.6″	126.7	128.2	126.9	128.8	128.3	128.6	127.3	127.6	127.5	129.0
C-3″.5″	128.4	114.0	129.1	115.3	128.6	131.5	131.8	128.0	128.8	128.2
C-4″	128.2	160.1	123.9	162.9	134.2	122.4	112.4	128.2	137.8	134.1
Others		OMe	Me				CN		Me	
		54.9	21.1				118.5		21.0	

Scheme 2

conformers and quasi-axial in the halfchair and envelope B conformers. In the envelope conformers C(1)=O and 8-H are coplanar and, therefore, $\overline{\delta(8-H_{envelope})} > \delta(8-H_{half chair})$. As far as conjugation is concerned, the envelope conformation is favoured but it is destabilized by the unfavourable steric interaction between the 8-H and the peri-positioned C(1)=O. These results suggest that in the case of the trans isomers the envelope and for the cis ones the halfchair conformation is favoured. On ring inversion of the envelope conformers A and **B** the axial and equatorial protons are interchanged. The ${}^{3}J_{H,H}$ coupling constant values (11.6-13.2 Hz) of the trans 3-H and 4-H protons refer to their antiperiplanar orientation and suggest that the conformational equilibrium between A and \tilde{B} is considerably shifted in one direction (Table 4). This is corroborated by the ${}^{3}J_{C-4a,3-H}$ coupling constants (Table 5) determined by 2D semiselective INEPT measurements.¹⁶ From the characteristic Karplus-type relationship between the ${}^{3}J_{C,H}$ coupling constants and the dihedral angles, the latter is estimated to be 160-175° between the C-4a and 3-H_{eg} atoms and for the 3-H_{ax} proton it is 70–80°, as confirmed by inspection of the Dreiding model and AM1 calculations. The coupling constants of the 3-H methylene proton (lower chemical shift) and the C-4a atom is 8.4 Hz for the trans-2a and 9.5 Hz for the cis-2a isomer, which refers to an equatorial orientation of this proton. In the case of *cis*-2a the J values of $J_{3-H_{ax},4-H_{ax}}$ 13.1 and $J_{3-H_{eo},4-H_{eo}}$ 2.7 Hz indicate that the conformational equilibrium is considerably shifted in one direction.

The measured $J_{C,H}$ values of $J_{4a,3eq}$ 9.5 and $J_{4a,3ax}$ 1.8 Hz are reference values for this conformer. On the basis of these ${}^{3}J$ data for the *trans*-**2a** isomer, the dominant conformer is populated at 85%; therefore, the axial and equatorial designations can be used for both isomers.

For carbohydrates a Karplus type relationship exists between the C–O–C-1–H J value and the corresponding dihedral angle, where a value of 7 Hz is expected for the 1-H_{eq} (Φ ca. 180°) and 2 Hz for the 1-H_{ax} (Φ ca. 60°).^{17–19} Parella et al.²⁰ found that for 1-hydroxycyclohexane derivatives the two respective values are 6 and 1 Hz, viz. in the C–X–C–H fragment, the replacement of X = O with X = CH₂ results in a ca. 1 Hz decrease. Comparison of the J values for the C–X–C–H units of the cis-2a and the related chromanone epoxides⁸ showed that the replacement of X = O by X = CH₂ brought about a 1 Hz increase in the vicinal coupling constant, which is in contradiction with the above-mentioned literature data. This

Table 4 ${}^{1}H{}^{-1}H$ coupling constants of spiroepoxides *trans*- and *cis*-2a $[J_{H,H} (Hz)]^{a}$

	trans-2a	cis -2a	
${}^{2}J_{3ax}$ and	13.5	13.1	
${}^{2}J_{4ax 4cg}$	16.4	16.8	
${}^{3}J_{3ax4ax}$	11.9	13.1	
${}^{3}J_{3ax4eq}$	4.5	4.6	
${}^{3}J_{3eq,4ax}$	4.5	4.6	
${}^{3}J_{3eq.4eq}^{3eq.4eq}$	4.4	2.7	

" The variation in coupling constants for the *trans*-2 and *cis*-2 series is max. 0.5 Hz.

Table 5 Results of the 2D semiselective INEPT measurements of spiroepoxides *trans*-2a and *cis*-2a, $e[J_{C,H}(Hz)]$

	trans-2a	cis-2a	cis-2e	
³ J _{1 3ax}		1.2		
${}^{3}J_{4a}{}^{3}a$		1.8		
${}^{3}J_{2',2n}$		3.8		
${}^{3}J_{1}{}_{3ac}$	5.4	5.7		
${}^{2}J_{2}^{3}$ and		7.1		
${}^{2}J_{A}^{2,3eq}$		3.8		
$^{3}J_{42}$ 3eg	8.4	9.5		
${}^{3}J_{3',3eq}$	6.5	3.1		
${}^{2}J_{2}{}_{3'}$			2.5	
${}^{2}J_{1'',3'}$	5.6		5.0	
${}^{3}J_{2^{\prime\prime}}^{1}$ or $6^{\prime\prime}.3^{\prime}$	2.2		2.3	

alteration may be a consequence either of the fact that in compounds **2** the carbon atom in the γ -position is sp² rather than sp³ or that the geometry of the ring with the carbonyl group is slightly different. Dihedral angles of the 3-H_{eq}-C-X-C= fragments obtained by AM1 calculations are within error limits (167° for the *cis*-**2a** tetralone and 163° for the analogous chromanone).

1D NOE measurements have been performed (Table 6) to determine the quasi-equatorial (type A) or quasi-axial (type B) orientation of the oxygen atom of the spiroepoxy moiety of the six-membered ring (Scheme 2) in the dominant conformer. These measurements allowed an unambiguous differentiation between the *trans*-2 and *cis*-2 isomers, since spatial proximity of the 3'-H and 3-H₂ methylene protons is possible only in the *cis*

 Table 6
 Results of 1D NOE measurements for spiroepoxides trans-2a,f and cis-2a,e (250 MHz)

	Proton irradiated	Protons for which NOE observed (%)
trans	-2a 3 _{ax} 3 _{eq}	3_{eq} (20.3) 3_{ax} (17.8); 4_{ax} (2.5); 4_{eq} (1.6); 3' (0.8); 2" and 6" (3.0)
	4_{ax} 4_{cq}	$3_{eq} (1.9); 5 (1.1) 3_{eq} (1.7); 4_{ax} (>7.0); 5 (3.3)$
trans	-2f $3'_{ax}$ 3_{eq}	2" and 6" (2.0) 3_{eq} (24.9) 3_{ax} (27.4); 4 (5.8); 2" and 6" (6.7)
cis- 2:	a 3 _{ax} 3 _{eq} 3'	$3_{eq} (23.2) 3_{ax} (27.3); 4_{ax} (2.7); 4_{eq} (2.0); 3' (10.2) 3_{eq} (5.6); 4_{ax} (1.5); $
cis- 2 6	2 3'	2" and 6" (5.2) 3_{eq} (5.8); 4_{ax} (<1); 2" and 6" (6.3)

Table 7 ${}^{1}H^{-1}C$ long-range correlations for spiroepoxides *trans*- and *cis-2* by semiselective 1D INEPT measurements ($J_{C,H}$ 7 Hz)

	Proton	Carbon
trans-2a	4 _{eg}	2; 4a; 5; 8a
	5	4; 7; 8a
trans-2c	3′	1"; 2",6"
trans-2e	5	4; 7; 8a
	3'	1": 2".6"
trans-2f	3′	1": 2".6"
cis-2a	4	2: 4a: 5: 8a
	3'	2: 1": 2".6"
	2".6"	3'
cis-2c	3'	3. 3'. 1". 2" 6"
cis-20	4	2: 3: 49: 5: 89
C13-2C	7 _{eq}	2, 3, 4a, 5, 6a $2 \cdot 1'' \cdot 2'' 6''$
	5	2, 1 , 2 ,0

isomers. Since the signal intensity was enhanced for the 3-H_{eq} methylene proton on irradiation of the 3'-H signal of *cis*-2a,e, the dominant conformer is the halfchair A, corroborated by the characteristic δ values for 8-H as well (Table 2). In the case of *cis*-2a, irradiation of 3'-H produced an NOE at 4-H_{ax}, as expected for the type A conformers. In the case of the *trans*-2a and 2f derivatives, irradiation of 3-H_{eq} resulted in an enhanced intensity for the 2",6"-H signal. These experiments suggest that the dominant conformer of the *trans*-2 isomers is the envelope A.

Semiempirical AM1 (MOPAC-6 version 1990)²¹ calculations have been performed for the conformers of the *trans*-**2a** and *cis*-**2a** isomers. Dihedral angles obtained by these calculations are $160-175^{\circ}$ for $(3-H_{eq})-(C-3)-(C-4)-(C-4a)$ and $70-80^{\circ}$ for $(3-H_{ax})-(C-3)-(C-4)-(C-4a)$. In the case of *cis*-**2a**, such calculations showed that the halfchair A is more stable by 3.0 kcal mol⁻¹ ‡ than the halfchair B conformer, which is in agreement with the results of our conformational analysis. In the *trans*-**2a** isomer, however, these calculations revealed that the envelope A and B conformers are present in comparable amounts, since their energy difference is only 0.1 kcal mol⁻¹. In the *trans* isomers the dihedral angle of 2–3° for the O-(C-1)-(C-8a)-(C-8) unit corresponds to an envelope conformer, while the 13–19° values indicate a halfchair conformer in the *cis* isomers.

¹H NMR chemical shifts (Table 2) indicate that the chemical shifts of the 3- H_{eq} signals are lower than those of the axial ones within the geminal pairs both in the *trans* and *cis* isomers,

which is a consequence of the diamagnetic effect of the threemembered ring.²² The *ca.* 0.3 ppm diamagnetic difference in the chemical shifts of the axial 3-H protons of the *trans*-2 isomers, compared to those measured for the respective *cis*-2 isomers, reveals that in the envelope A conformer of the *trans* isomers the 3-H_{ax} proton is closer to the aromatic ring of the tetralone moiety, which is reflected in a more pronounced diamagnetic effect. Moreover, the assignments of the ¹H and ¹³C NMR signals have been further corroborated by two-dimensional C,H COSY measurements.

In the ¹³C NMR spectra the quaternary C-4a and C-8a signals were unambiguously assigned (Table 5) by means of 2D semiselective INEPT measurements since the polarization transfer from $3-H_{eq}$ differentiates between these two carbon atoms. The C-2″,6″ and C-3″,5″ signals were identified by means of 1D semiselective INEPT ²³ measurements optimized for the 7 Hz coupling constant of the 3'-H signal (Table 7). These measurements reveal carbon atoms which are located two or three bonds distant from the irradiated proton. Further corroboration of the assignment of the C-3, C-4, C-7 and C-8 signals has been performed by the polarization transfer derived from the respective protons.

Further support for the assignment of the *trans*-2 and *cis*-2 isomers was possible through the characteristic value of $\Delta \delta = 7$ of the C-3 signals, which is a consequence of the γ -gauche arrangement between the C-3 and the aryl group connected to C-3' in the *trans* isomers. A further characteristic is the decrease of $\Delta \delta = ca$. 1.5 for C-3' in the *trans*-2 vs. *cis*-2 isomers, which we have also observed for analogous spirocyclopropanes²⁴ and spiroepoxides.⁸ In the *trans*-2 isomers this is the consequence of the γ -steric interaction between the carbonyl oxygen and the C-3'-H moiety, which results in a diamagnetic shift, while in the *cis* epoxides the carbonyl oxygen is in spatial proximity to the C-3'-C-1" bond.

The stereochemical outcome of the epoxidations, as established by the NMR methods can be rationalized by the known mechanisms of these reactions. Since the Weitz-Scheffer nucleophilic epoxidation with alkaline peroxide is a two-step process to afford an intermediate enolate, fast epimerization at the α -carbon atom in the latter should lead preferentially to the thermodynamically favoured trans epoxides from both E and Z isomers of the α,β -enone substrates. A control experiment established that $Z \rightarrow E$ isomerization did not take place under the employed alkaline reaction conditions. In contrast, dimethyldioxirane, an electrophilic oxidant, reacts with these $\alpha,\beta\text{-unsaturated}$ ketones according to the known 13 "butterfly mechanism" to give the trans-2 epoxides from (E)-1 and the cis-2 epoxides from (Z)-1 as sole products. Similarly, for the electrophilic epoxidation by *m*-chloroperoxybenzoic acid oxygen transfer with syn stereochemistry would also be expected.25 Therefore, the formation of the spiroepoxides cis-2a,c,e and trans-2a,c,e from (Z)-1a,c,e as a ca. 6:1 mixture may be attributed to an initial $Z \rightarrow E$ acid-catalysed isomerization.²⁶ Indeed, a control experiment established that addition of a fresh portion of the cis-olefin to a spent m-CPBA epoxidation mixture led to appreciable isomerization.

In summary, two convenient procedures, namely Weitz-Scheffer epoxidation of both (E)-1 and (Z)-1 and dimethyldioxirane epoxidation of (E)-1 have been developed for the synthesis of the *trans* epoxides of 2-arylmethylidene-1-tetralones. *cis*-Epoxides are produced stereoselectively by the dimethyldioxirane epoxidation of (Z)-2-arylmethylidene-1tetralones. Despite the fact that in the latter procedure the *cis* epoxides are obtained only in moderate yields (20–30%), presumably due to decomposition, this is the only method for the stereoselective synthesis of *cis* epoxides. *m*-Chloroperoxybenzoic acid [method (*iii*)] is not a suitable reagent for the stereoselective synthesis of *cis* epoxides of 2-arylmethylidene-1-tetralones since *cis*-*trans* mixtures of epoxides were obtained.

 $[\]ddagger 1 \text{ kcal} = 4.184 \text{ J}.$

 Table 8
 Physical constants, analytical and IR spectral data of spiroepoxides 2

			$\begin{array}{ll} C)^{a} & vC=O \\ np) & (cm^{-1}) \end{array}$	0 1	Required (%)		Found	(%)
Compound	Appearance	(Lit. mp)		formula	C	Н	C	Н
 trans-2a	Р	76–77 (77–77.5) ⁴	1690	C ₁₇ H ₁₄ O ₂	81.6	5.65	81.8	5.7
trans-2b	Р	105–106	1686	$C_{18}H_{16}O_{3}$	77.15	5.75	77.35	5.8
trans-2c	Ν	145–146	1690	$C_{18}H_{16}O_{2}$	81.8	6.1	81.8	6.15
trans-2d	Р	88-89	1686	$C_{17}H_{13}FO_2$	76.25	4.9	76.4	4.85
trans-2e	Ν	141-142 (137-138) ⁵	1686	$C_{17}H_{13}ClO_2$	71.7	4.6	71.5	4.5
trans-2f	Р	138–140	1686	C ₁₇ H ₁₃ BrO ₂	62.2	3.95	62.3	3.9
trans-2g	P	151-152	1690	$C_{18}H_{13}NO_{2}$	78.5	4.75	78.35	4.7
cis-2a	Р	113-114	1690	$C_{17}H_{14}O_{7}$	81.6	5.65	81.75	5.6
cis- 2c	Р	107-108	1690	$C_{18}H_{16}O_{7}$	81.8	6.1	81.7	6.2
 cis-2e	N	115–116	1690	C ₁₇ H ₁₃ ClO ₂	71.7	4.6	71.6	4.7

^{*a*} Crystallized from CH_3OH , P = powder, N = needles.

Experimental

Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. IR spectra were measured with a Perkin-Elmer 16 PC instrument as KBr discs. The ¹H (400 and 250 MHz) and ¹³C (100 and 62.5 MHz) NMR spectra were obtained on Bruker AC-400 and AC-250 spectrometers in deuteriobenzene with tetramethylsilane as the internal standard at room temperature. J Values are given in Hz. Elemental analyses were performed in-house. All solvents were purified by following standard literature methods. Caroate (potassium monoperoxosulfate), the triple salt $2KHSO_{4} \cdot K_{2}SO_{4}$, was used as received. Dimethyldioxirane (ca. 0.1 mol dm^{-3} in acetone) was prepared according to the published procedure 14 and its peroxide content was determined by iodometric titration. The dimethyldioxirane solutions were stored over molecular sieves (4 Å) at -20 °C. Substrates (E)- and (Z)-1 were prepared according to known procedures.¹⁻³ Chromatography was performed on silica gel 60 (Merck) with hexane-acetone (8:2) or hexane-benzene (3:2) as eluents.

General procedures for the preparation of spiroepoxides 2

Method (i). Hydrogen peroxide $(30\%; 1.0 \text{ cm}^3, 8.82 \text{ mmol})$ was added to a cooled and stirred mixture of the appropriate 2-arylmethylidene-1-tetralone 1 (1.00 g, 3.19–4.27 mmol) and NaOH (2 mol dm⁻³, 4.0 mmol) in methanol (20 cm³). The stirring was continued at ambient temperature for 8 h (or as specified in Table 1), after which the mixture was diluted with water and the precipitated material was filtered off, washed with water and dried to give the epoxides 2 (Tables 1 and 8).

Method (*ii*). The required amount of the dimethyldioxirane (in acetone) was added rapidly to a cooled and stirred solution of the appropriate 2-arylmethylidene-1-tetralone 1 (0.50 g, 1.86-2.13 mmol) in dry CH₂Cl₂ (5.0 cm³) and stirred in the dark. The stirring was continued for 24 h and another quantity of dimethyldioxirane was rapidly added. The dioxirane administration was continued at 24 h intervals until consumption of the starting material 1 was complete. The mixture was evaporated under reduced pressure (*ca.* 20 mmHg) and the residue was recrystallized from CH₃OH to afford the corresponding *trans*-2a-g spiroepoxides. In the case of (*Z*)-1a,c,e, silica gel chromatography with hexaneacetone (8:2) as the eluent was used to produce spiroepoxides *cis*-2a,c,e.

Method (iii). The appropriate (Z)-2-arylmethylidene-1-tetralone (0.70 g, 2.61–2.99 mmol) and m-CPBA (0.60 g, 3.49 mmol) were dissolved in benzene (30 cm³) and heated under reflux for 8 h. The mixture was left to stand overnight at room temperature, the precipitated m-chlorobenzoic acid was filtered off and the filtrate washed with 10% aq. NaHCO₃ and water. The mixture was dried over CaCl₂ and evaporated under reduced pressure (*ca.* 20 mmHg) after which the residue was chromatographed on silica gel with hexane–acetone (8:2) as the eluent to yield both *cis*- and *trans*-2a,c,e epoxides. Thus, (Z)-1a gave *trans*-2a (10%) and *cis*-2a (60%), (Z)-1c gave *trans*-2c (8%) and *cis*-2c (48%), whilst (Z)-1e gave *trans*-2e (8%) and *cis*-2e (56%).

Alkaline treatment of (Z)-2-(4-methylbenzylidene)-1-tetralone (Z)-1c. To a stirred mixture of (Z)-1c (0.50 g, 2.01 mmol) and methanol (20 cm³), NaOH (2 mol dm⁻³; 1.0 cm³, 2.0 mmol) was added. The stirring was continued for 8 h at *ca*. 20 °C, after which TLC analysis and ¹H NMR spectroscopy showed that *ca*. 10% of the starting (Z)-1c had isomerized into (E)-1c.

Acknowledgements

The work in Debrecen and Budapest was sponsored by the Hungarian National Research Foundation (Grant Nos. OTKA-1639 and OTKA-T7459), by the Hungarian Ministry for Culture and Education (Grant No. 14/94) and by the European Community (COST Project ERBCIPECT 926003 8385). The work in Würzburg was generously financed by the Deutsche Forschungsgemeinschaft (SPP 'Peroxidchemie: Mechanistische und präparative Aspekte des Sauerstoff-transfers'). Technical assistance of Mrs M. Nagy is highly appreciated. C. N. thanks the UNIVERSITAS Foundation of the Hungarian Commercial Bank (Debrecen, Hungary) for a grant and J. H. the J. Varga Foundation (Budapest, Hungary) for a fellowship.

References

- 1 D. N. Kevill, E. D. Weiler and N. H. Cromwell, J. Org. Chem., 1964, 29, 1276.
- 2 O. Azzolina, G. Desimoni, V. DiToro, V. Ghislandi and G. Tacconi, Gazz. Chim. Ital., 1975, 105, 971.
- 3 C. J. Rao, K. M. Reddy and A. K. Murthy, *Indian J. Chem.*, 1981, 20B, 282.
- 4 (a) A. Hassner, N. H. Cromwell and S. J. Davis, J. Am. Chem. Soc., 1957, 79, 230; (b) A. Hassner and N. H. Cromwell, J. Am. Chem. Soc., 1958, 80, 893.
- 5 N. H. Cromwell, R. E. Bambury and R. P. Barkley, J. Am. Chem. Soc., 1959, 81, 4294.
- 6 N. H. Cromwell and R. E. Bambury, J. Org. Chem., 1961, 26, 1729.
- 7 W. Adam, L. Hadjiarapoglou and A. Lévai, Synthesis, 1992, 436.
- 8 W. Adam, J. Halász, A. Lévai, Cs. Nemes, T. Patonay and G. Tóth, Liebigs Ann. Chem., 1994, 795.
- 9 Cs. Nemes, A. Lévai, T. Patonay, G. Tóth, S. Boros, J. Halász, W. Adam and D. Golsch, J. Org. Chem., 1994, 59, 900.
- 10 J. Halász, G. Tóth, A. Lévai, Cs. Nemes and Zs. Jámbor, J. Chem. Res. (S), 1994, 326.
- 11 W. Adam, D. Golsch, L. Hadjiarapoglou, A. Lévai, Cs. Nemes and T. Patonay, *Tetrahedron*, 1994, **50**, 13113.
- 12 E. Weitz and A. Scheffer, Ber. Dtsch. Chem. Ges., 1921, 54, 2327.
- 13 (a) W. Adam, R. Curci and J. O. Edwards, Acc. Chem. Res., 1989,

22, 205; (b) R. W. Murray, Chem. Rev., 1989, 89, 1187; (c) R. Curci, in Advances in Oxygenated Process, ed. A. L. Baumstark, JAI, Greenwich, CT 1990, vol. 2, ch. I; (d) W. Adam, L. Hadjiarapoglou, R. Curci and R. Mello, in Organic Peroxides, ed. W. Ando, Wiley, New York, 1992, p. 195; (e) W. Adam and L. Hadjiarapoglou, Top. Curr. Chem., 1993, 164, 45.

- 14 (a) R. W. Murray and R. Jeyaraman, J. Org. Chem., 1985, 50, 2847;
 (b) W. Adam, L. Hadjiarapoglou and A. Smerz, Chem. Ber., 1991, 124, 227; (c) W. Adam, J. Bialas and L. Hadjiarapoglou, Chem. Ber., 1991, 124, 2377.
- 15 J. W. ApSimon, W. G. Craid, P. V. Demarco, D. V. Mathieson, L. Sanders and W. B. Whalley, *Tetrahedron*, 1967, 23, 2339.
- 16 T. Jippo, O. Kamo and K. Nagayama, J. Magn. Reson., 1986, 66, 344.
- 17 B. Mulloy, T. A. Frenkiel and D. B. Davies, *Carbohydr. Res.*, 1988, 184, 39.
- 18 I. Tvaroska, M. Hricovíni and E. Petráková, *Carbohydr. Res.*, 1989, 189, 359.

- 19 D. Uhrin, T. Liptaj, M. Hricovini and P. Capek, J. Magn. Reson., 1989, 85, 137.
- 20 T. Parella, F. Sánchez-Ferrando and A. Virgili, *Magn. Reson. Chem.*, 1994, **32**, 657.
- 21 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.
- 22 H. Günther, *NMR-Spektroskopie*, 3. Auflage, Georg Thieme Verlag, Stuttgart, 1992.
- 23 A. Bax, J. Magn. Reson., 1984, 57, 314.
- 24 G. Tóth, A. Lévai, Z. Dinya and G. Snatzke, *Tetrahedron*, 1991, **47**, 8119.
- 25 N. S. Isaacs, *Physical Organic Chemistry*, Longman Group, London, 1987, p. 563.
- 26 G. Toth, F. Janke and A. Lévai, Liebigs Ann. Chem., 1989, 651.

Paper 5/02714D Received 28th April 1995 Accepted 21st September 1995

[©] Copyright 1996 by the Royal Society of Chemistry